If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+72x+144=0
a = 1; b = 72; c = +144;
Δ = b2-4ac
Δ = 722-4·1·144
Δ = 4608
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4608}=\sqrt{2304*2}=\sqrt{2304}*\sqrt{2}=48\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(72)-48\sqrt{2}}{2*1}=\frac{-72-48\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(72)+48\sqrt{2}}{2*1}=\frac{-72+48\sqrt{2}}{2} $
| 3÷x=-2 | | (X+15)(x+10)=150 | | x12=96 | | 18=3+5x(x-18) | | 7+x-6=2x-8 | | 11r+9=6r-1 | | 12x=15x-18 | | 4x+1-1=6 | | 4x²-5x-6=0 | | n2=13+75 | | 6x²-8x-8=0 | | 5x-3-9=9 | | 83x-90+7x=20+90x-110 | | 3x-7+5x-9=32 | | 1-12t+17=20-14t | | 1-125+17=20-14t | | (3q–1)=(3q+1) | | -t+4t=3t | | (4x-16)^(1/2)=36 | | -4r-6=-2r+8 | | 2x+3x-7=5x+4 | | v-6+8v=-6+9v | | (3q–1)(3q+1=) | | 130=10a-20 | | 3x+12=3.5x+2 | | 7x-19=90 | | 9x^2+55x-56=0 | | 38+9x-3x-7=1 | | 4x^2=1/4 | | a+12/4=6 | | P(x)=4(3)-5 | | n×n^2=343 |